On track to a triple combo therapy

Elizabeth Goodwin, VP IR
Dr Gerben van ‘t Klooster, VP Development Programs

IR event @ NACFC, 27 Oct 2016
Disclaimer

This presentation has been prepared by Galapagos and is furnished to you by Galapagos solely for your information.

This presentation contains forward-looking statements, including (without limitation) statements concerning the progress of our clinical pipeline, the slides captioned “Diversified and maturing pipeline” “Rich pipeline of CFTR modulators” “Key steps in our CF program”, statements regarding the development of the triple combination therapy CF program, statements regarding the expected timing, design and readouts of ongoing and planned clinical trials (i) with filgotinib in RA and IBD, (ii) in the CF program, (iii) with GLPG1690 in IPF, (iv) with GLPG1972 in OA, (v) with MOR106 in inflammation, and expectations regarding the commercial potential of our product candidates. When used in this presentation, the words “anticipate,” “believe,” “can,” “could,” “estimate,” “expect,” “intend,” “is designed to,” “may,” “might,” “will,” “plan,” “potential,” “possible,” “predict,” “objective,” “should,” and similar expressions are intended to identify forward-looking statements.

Forward-looking statements involve known and unknown risks, uncertainties and other factors which might cause the actual results, financial condition, performance or achievements of Galapagos, or industry results, to be materially different from any future results, financial conditions, performance or achievements expressed or implied by such forward-looking statements. Among the factors that may result in differences are the inherent uncertainties associated with competitive developments, clinical trial and product development activities, regulatory approval requirements (including that data from the company’s development programs may not support registration or further development of its compounds due to safety, efficacy or other reasons), reliance on third parties (including Galapagos’ collaboration partner for cystic fibrosis, AbbVie, and its collaboration partner for filgotinib, Gilead) and estimating the commercial potential of its product candidates. A further list and description of these risks, uncertainties and other risks can be found in Galapagos’ Securities and Exchange Commission filing and reports, including Galapagos’ most recent 20-F filing and subsequent reports filed by Galapagos with the SEC. Given these uncertainties, you are advised not to place any undue reliance on such forward-looking statements.

All statements contained herein speak only as of the release date of this document. Galapagos expressly disclaims any obligation to update any statement in this document to reflect any change or future development with respect thereto, any future results, or any change in events, conditions and/or circumstances on which any such statement is based, unless specifically required by law or regulation.

Neither Galapagos nor any of its officers, employees, advisers, or agents makes any representation or warranty, express or implied, as to any matter or as to the truth, accuracy, or completeness of any statement made in this presentation, made in conjunction therewith or in any accompanying materials or made at any time, orally or otherwise, in connection with the matters referred to herein and all liability in respect of any such matter or statements is expressly excluded.
Galapagos at a glance

- Listed on Euronext & NASDAQ: GLPG
- Novel mode of action drugs
- Proof of platform: filgotinib in Ph 3
- Partners: GILD, ABBV, Servier, MOR
- Q2 cash ~$1B, market cap ~$3B
- 480 employees at 4 EU sites
Our strategy

- Identify novel drug targets in human cells
- Design & develop first-in-class drugs
- Deliver on our key product partnerships
- Build a commercial EU organization
- Take selected programs to market ourselves
Diversified and maturing pipeline

<table>
<thead>
<tr>
<th>Area</th>
<th>Pre-clinical</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Partner</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>JAK1</td>
<td>filgotinib</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>JAK1</td>
<td>filgotinib</td>
<td></td>
<td></td>
<td>Gilead</td>
</tr>
<tr>
<td>UC</td>
<td>JAK1</td>
<td>filgotinib</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Potentiator</td>
<td>‘2451’</td>
<td>‘1837’</td>
<td></td>
<td>AbbVie</td>
</tr>
<tr>
<td>CF</td>
<td>C1</td>
<td>‘2222’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>C2</td>
<td>‘2737’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPF</td>
<td>Autotaxin</td>
<td>‘1690’</td>
<td></td>
<td></td>
<td>Servier</td>
</tr>
<tr>
<td>OA</td>
<td></td>
<td>‘1972’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atop. D</td>
<td>MOR106</td>
<td></td>
<td></td>
<td></td>
<td>MorphoSys</td>
</tr>
<tr>
<td>IPF</td>
<td></td>
<td>‘2938’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atop. D</td>
<td></td>
<td>‘2534’</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gene mutations in cystic fibrosis
Genetic disorder

Patients with CF carry a genetic mutation that causes the key chloride channel CFTR to be not produced or trafficked properly.
CF: protein folding & function disease
Treatment strategy for improvement

CF drug discovery

Develop triple combination therapy for treatment of most CF patients

Adapted from Dr. Scott Donaldson’s Plenary Session (NACFC, 2013)
Over a decade of CF research

- **2005-2008:** target discovery with CFF
 - non-CFTR targets – 3 hits

- **2009-2010:** hit optimization and evaluation
 - finally found not to improve CFTR function
Over a decade of CF research

CFTR targeting

- 2011-2012: targeting CFTR
 - cell lines development
 - medicinal chemistry

- 2013: collaboration with AbbVie
 - Galapagos leads discovery through to clinical Phase 2
 - AbbVie leads Phase 3 and commercial

TECC data for triple, HBE cells F508del/F508del, 7 donors
Rich pipeline of CFTR modulators

Discovery
- Potentiator – GLPG1837
- Potentiator – GLPG2451
- Potentiator – GLPG3067

Preclinical
- F508del corrector C1/Early – GLPG2222
- F508del corrector C1/Early – GLPG2851

Phase 1
- F508del corrector C2/Late – GLPG2737

Phase 2
- F508del corrector(s) C2/Late – GLPGxxxx
Novel potentiators
Activity and efficacy on F508del and G551D CFTR

F508del/ F508del HBE

G551D/F508del HBE
‘1837: safe, well tolerated in Ph 1

Safe with single doses up to 2000 mg, 14-day dosing up to 800 mg b.i.d.
‘1837 in CF patients
SAPHIRA studies

- **SAPHIRA 1** in CF patients with G551D mutation
- **SAPHIRA 2** in S1251N mutation (Dutch mutation)

Primary cells - EC\textsubscript{50} = 373 nM
Efficacy = 180% of VX-770

Organoids - EC\textsubscript{50} = 15 nM
Similar potency as on F508del
Efficacy = 100% of VX-770
‘2222: C1 corrector
Expression and chloride current in F508del/F508del

Increase CFTR surface expression

Chloride current vs VX-809, 661

‘2222: potent C1 corrector
‘2222: safe, well tolerated in Ph 1

- Randomized, double blind, placebo-controlled healthy volunteer study
- SAD up to 800 mg
- 14-day MAD: 150, 300, 600 mg q.d.
- Safe and well tolerated over dose range studied
- PK profile supports once daily dosing for future development

Data presented today at NACFC
C2 corrector, series 1
Series progression to ‘2737

Cell surface expression
(combination with early corrector)

F508del/F508del HBE cells
TECC data ‘2737

% of GLPG2222 + potentiator

Triple combo with ‘2737: strong correction across multiple donors
Dual and triple combinations
F508del/F508del primary cells

% of dual combo
CFTR restoration

GLPG triple combo achieves greater CFTR vs Orkambi in vitro
Future CF clinical development

Advancing clinical development pathways for new CFTR modulators in cystic fibrosis

Nicole Mayer-Hamblett,¹,² Michael Boyle,³,⁴ Donald VanDevanter⁵

The objectives of this review are to outline the challenges and opportunities in drug development created by systemic genotype-specific CFTR modulators, highlight the advantages of sweat chloride as an established biomarker of CFTR activity to streamline early-phase development and summarise options for later phase clinical trial designs that respond to the adoption of approved genotype-specific modulators into standard of care. An optimal development framework will be needed to move the most promising therapies efficiently through the drug development pipeline and ultimately deliver efficacious and safe therapies to all individuals with CF.

- study design
- endpoints
- rare mutations
- regulatory framework
SAPHIRA studies
‘1837 Phase 2A trials – ‘translational studies’

Dose escalation with GLPG1837
Follow-up
4-wk

SAPHIRA 1: G551D (26 pts) enrollment completed

SAPHIRA 2: S1251N (7 pts) data presented

- Recruitment in 6 EU countries & Australia
- Includes Kalydeco naive & treated (after 7d washout period)
- Primary endpoints: safety & tolerability
- Secondary endpoints: sweat chloride, FEV1, plasma levels
SAPHIRA 2
Dose/exposure selection

S1251N/F508del organoids

• In S1251N/F508del organoids, GLPG1837 EC$_{50}$ is 7.8 nM, setting a clinical target plasma C$_{trough}$ of 12 ng/ml
• ‘1837 doses: 62.5 and 125 mg b.i.d.
SAPHIRA 2 PK

Day 15 (62.5 mg b.i.d.)

<table>
<thead>
<tr>
<th># Subjects above predicted target C_{trough}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 29 (125 mg b.i.d.)</td>
</tr>
<tr>
<td>2/6</td>
</tr>
<tr>
<td>3/5</td>
</tr>
</tbody>
</table>

GLPG1837 plasma levels (ng/mL)

- 3201-01
- 3201-02
- 3201-03
- 3201-04
- 3202-01*
- 3203-01
- Geomean

Predicted target C_{trough}:
- 6.64
- 13.7

Galápagos
SAPHIRA 2
Impact of ivacaftor washout, treated vs naïve

Short (7 days) washout for ivacaftor pretreated subjects (n=3):

- substantial increase of sweat chloride levels, confirming its value as biomarker
- slight FEV₁ decline (-3%)

![Graph showing sweat chloride and ppFEV₁ levels for ivacaftor pre-treated and naïve groups.](image-url)
SAPHIRA 2
Changes in FEV$_1$ in S1251N

- Following a washout from ivacaftor, treatment with GLPG1837 stabilizes lung function

- FEV$_1$ tends to increase (clinical activity) when plasma concentrations exceed the target
 - Stable FEV$_1$ in subject with severe lung disease

Confirmation of *in vitro* assays
SAPHIRA 2
Changes in sweat chloride in S1251N

<table>
<thead>
<tr>
<th></th>
<th>Day 15</th>
<th></th>
<th>Day 29</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2 wks on 62.5 mg b.i.d.)</td>
<td>(2 wks on 125 mg b.i.d.)</td>
<td></td>
</tr>
<tr>
<td>ΔSwCl</td>
<td>> 15 mmol/L</td>
<td>> 50 mmol/L</td>
<td>> 15 mmol/L</td>
</tr>
<tr>
<td># Subjects</td>
<td>2/5</td>
<td>0/5</td>
<td>4/5</td>
</tr>
</tbody>
</table>

Confirmation of *in vitro* assays
High level path for CF program

<table>
<thead>
<tr>
<th></th>
<th>2016</th>
<th></th>
<th>2017</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1Q</td>
<td>2Q</td>
<td>3Q</td>
<td>4Q</td>
</tr>
<tr>
<td></td>
<td>'2222'</td>
<td></td>
<td></td>
<td>'2222'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAPHIRA '1837'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>'2451'</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DUAL P + C1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FiH studies, Combinations in healthy volunteers, Patient evaluations
Clinical news flow

<table>
<thead>
<tr>
<th>Disease area</th>
<th>Program</th>
<th>Partner</th>
<th>H2 ‘16</th>
<th>FY ‘17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatoid arthritis</td>
<td>filgotinib</td>
<td></td>
<td>Start Ph3✓</td>
<td></td>
</tr>
<tr>
<td>Crohn’s</td>
<td>filgotinib</td>
<td>GILEAD</td>
<td>First dosing</td>
<td>Ph 3 in Q4</td>
</tr>
<tr>
<td>Ulcerative colitis</td>
<td>filgotinib</td>
<td></td>
<td>First dosing</td>
<td>Ph 2/3 in Q4</td>
</tr>
<tr>
<td>Additional indications</td>
<td>filgotinib</td>
<td></td>
<td></td>
<td>Start multiple POCs with filgotinib</td>
</tr>
<tr>
<td>Cystic fibrosis</td>
<td>multiple</td>
<td>abbvie</td>
<td>‘1837 Ph 2 results</td>
<td>‘2451 Ph 1 results</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>‘2737 Ph 1 start</td>
<td>‘2737 Ph 1 results</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Additional Ph 1 starts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Triple selection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Start triple in patients</td>
</tr>
</tbody>
</table>
Clinical news flow

<table>
<thead>
<tr>
<th>Disease area</th>
<th>Program</th>
<th>Partner</th>
<th>H2 ’16</th>
<th>FY ’17</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPF</td>
<td>GLPG1690</td>
<td></td>
<td>Ph 2 recruited</td>
<td>Topline Ph2A</td>
</tr>
<tr>
<td>IPF</td>
<td>GLPG2938</td>
<td></td>
<td></td>
<td>Start Ph1</td>
</tr>
<tr>
<td>Osteoarthritis</td>
<td>GLPG1972</td>
<td>Servier</td>
<td>GLPG files US IND</td>
<td>Start Ph2 in US</td>
</tr>
<tr>
<td>Atopic dermatitis</td>
<td>MOR106</td>
<td>morphosys</td>
<td>First patient dosing✓</td>
<td>Topline Ph1B</td>
</tr>
<tr>
<td>Atopic dermatitis</td>
<td>GLPG2534</td>
<td></td>
<td></td>
<td>Start Ph1</td>
</tr>
</tbody>
</table>