Exploration of GLPG0634, the first selective JAK1 inhibitor, in Inflammatory Bowel Disease is supported by early clinical results and mouse DSS-colitis data

René Galien, Didier Merciris, Frédéric Vanhoutte, Carole Delachaume, Florence Namour, Béatrice Vayssière, Annegret Van der Aa, Reginald Brys, Gerben van ‘t Klooster

Galapagos
Mechelen, Belgium, and Romainville, France

Digestive Disease Week 2014 – pres# 188 – Saturday, May 3
Disclosures

- Galapagos: all authors are employees

- AbbVie: provided funding for the development of GLPG0634
Janus kinases (JAKs) signal for cytokines and growth factors

- 4 types of JAKs signal for interferons, many interleukins and growth factors
 - JAK1: IFN; IL2, IL6, IL7, IL15, IL21, …
 - JAK2: EPO, TPO, GH; IL6, …
 - JAK3: IL2, IL4, IL7, IL15, IL21, …
 - TYK2: IFN; IL12, IL23

- Typically two JAKs combine to phosphorylate STATs* for signal progression to cell nucleus

* signal transducer and activator of transcription
Selectivity in JAK inhibition makes a difference

Cytokine receptors sharing the γ_c-chain

Homodimeric cytokine receptors

Cytokine receptors sharing IL-12Rβ_1 subunit

<table>
<thead>
<tr>
<th></th>
<th>IL-2</th>
<th>IL-6</th>
<th>Erythropoietin</th>
<th>IFN</th>
<th>IL-12, IL-23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jak1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>Jak2</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>Jak3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>Tyk2</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Jak1 inhibitor: +
Jak2 inhibitor: -
Jak3 inhibitor: +
Tyk2 inhibitor: -

Courtesy: Dr. John J. O'Shea, NIH, Bethesda
Selective JAK1 inhibition

- JAK1 inhibition suppresses signaling for (pro)inflammatory cytokines
- JAK2 inhibition (also) suppresses EPO, TPO, GH signaling
 - Risks of inducing anemia
GLPG0634: a selective JAK1 inhibitor

• Highly selective inhibitor of Janus kinase 1 (JAK1)
 ➢ Biochemical IC50 ~ 10 nM
 ➢ >50-fold selective over non-JAK kinases and JAK3
 ▪ 30-fold for FLT3/4
 ➢ 30-fold selective over JAK2 in human whole blood
 ▪ no anemia induced

• Oral treatment with opportunity for once-daily dosing
• Novel mode of action for potential treatment of IBD
• Shown safe and effective in short-term studies in rheumatoid arthritis
GLPG0634 *in vitro* pharmacology

High selectivity for JAK1 over JAK2

- Highly selective for JAK3 and TYK2 in biochemical assays
- Pharmacology profiling in human whole blood
 - JAK1: IL-6 induced pSTAT1 in CD4+ cells (GLPG0634 IC$_{50}$ ~ 600 nM)
 - JAK2: GM-CSF induced pSTAT5 in CD34+ cells (GLPG0634 IC$_{50}$ ~ 17.5 µM)

Selectivity for JAK1 over JAK2 (ratio IC$_{50}$ values)

Early clinical evaluation of GLPG0634

- Healthy volunteers dosed up to 450 mg QD for 10 days
- RA patients dosed up to 300 mg QD for 4 weeks

- Well tolerated and safe – no MTD reached
 - No anemia, no effects on LFTs or lipids

- Good oral pharmacokinetics – similar in patients and healthy volunteers
 - Consistent with once-daily dosing

- Pharmacodynamics in healthy volunteers confirms JAK1 selectivity
High-level JAK1 inhibition in humans
No JAK2 inhibition up to high doses

- Healthy volunteers taking oral 300mg GLPG0634 once-daily
- Well tolerated with no changes in hematology, including reticulocytes

F. Namour et al., ACR2013, abstract 1795
4-weeks of GLPG0634 in rheumatoid arthritis improves disease and suppresses inflammation

- 4 weeks GLPG0634 as 100 mg BID or 200 mg QD
 - Generally well tolerated and safe; no significant findings
 - Dose range (30-75-150-300 mg QD) in subsequent 4-week study showed similar effects overall for doses ≥ 75 mg QD

F. Vanhouette et al., ACR2012, abstract 2489
JAK inhibition: therapeutic opportunity in IBD

- **Rationale:**
 Cytokines that depend on JAK signaling play a key role in both UC and Crohn’s disease

- **Current clinical experience: tofacitinib**
 - inhibits JAK3>JAK1>JAK2
 - low Hb/anemia dose-limiting in early clinical exploration (RA)\(^1\)
 - effective in Phase 2 study in UC\(^2\), not (yet) in initial exploration in Crohn’s\(^3\)

JAK inhibition: therapeutic opportunity in IBD

- **Rationale:**
 Cytokines that depend on JAK signaling play a key role in both UC and Crohn’s disease

- **Current clinical experience: tofacitinib**
 - inhibits JAK3>JAK1>JAK2
 - low Hb/anemia dose-limiting in early clinical exploration (RA)¹
 - effective in Phase 2 study in UC², not (yet) in initial exploration in Crohn’s³

GLPG0634 dose-dependently improves DSS-induced chronic colitis in mice

Graph showing the disease activity index over days for different treatments:
- H2O intact
- 4% DSS
- 10 mg/kg GLPG0634
- 30 mg/kg GLPG0634

Balb/c mice treatment:
- DSS 4%
- H2O
- DSS 4%
- H2O
- DSS 4%

GLPG0634 once-daily oral treatment
GLPG0634 improves DSS-inflammation

- GLPG0634 treatment controls serum inflammation markers (CRP, IL-1β) and chemo-attractants (CXCL1, CXCL2)
JAK1 inhibition improves DSS-inflammation

- Anti-inflammatory effects of GLPG0634 are associated with suppression of STAT3 phosphorylation
- Plasma exposures are around the IC₅₀ for JAK1 inhibition but remain well below the IC₅₀ for JAK2
Summary and Conclusions

- GLPG0634 is a potent and selective inhibitor of JAK1
- In Phase 1 clinical evaluations, once-daily oral GLPG0634 showed a good tolerability, safety and PK, and inhibition of JAK1 but not JAK2
- 4-week studies in patients with rheumatoid arthritis have confirmed a good safety and have demonstrated anti-inflammatory efficacy
- Once-daily treatment with GLPG0634 shows convincing efficacy in the mouse DSS-induced colitis model
- By inhibition of JAK1 but not JAK2, unwanted effects such as anemia may be prevented – this may be of particular importance in IBD patients with IBD, who frequently experience fecal blood loss
Ongoing study in Crohn’s disease

- These early data support a currently ongoing multi-center evaluation of GLPG0634 treatment in patients with Crohn’s disease
 - 180 patients with moderate to severe Crohn’s disease (CDAI: 220 – 450)
 - Two-part study: 10 weeks induction (Part 1) and 10 weeks follow-up (Part 2)
 - Re-randomization Part 2; placebo non-responders to receive 100 mg GLPG0634 QD
 - Efficacy, safety, tolerability, pharmacokinetics over 20 weeks
 - Primary endpoint at week 10: CDAI <150.
 - Secondary: CDAI decrease >100, SES-CD <4 or 50% reduction in SES-CD

![Graph showing placebo and GLPG0634 treatments over 20 weeks]
Acknowledgements

- All clinical trial participants, patients and healthy volunteers
- Clinical trial team at SGS, Antwerp, Belgium, for healthy volunteer studies
- Prof. Mazur and team, Chisinau, Moldova, for PoC study in RA patients
- Colleagues at Galapagos, in Mechelen, Belgium and Romainville, France